High-Dimensional Bayesian Optimization with
Multi-Task Learning for RocksDB

JoF

12 S

JoF

L

S

Q) Iiien=ras  (@)ammict
Ministry of Science and ICT % Y ¢Y YONSEI UNIVERSITY

s

SIW

SW STOR LAB

Software Technology Advanced Research

AHH|B: 101 EE S lTt g HAI HI 22
2 Ee|X| 7|¢ M2 2] E 4 pms AW R

TA|HH S 2017-0-00477

o|r
= Mt
i




=y

—

Abstract

Introduction

Background

Structured multi-task optimization

Evaluation

Conclusion



Abstract

Maximizing the throughput of RocksDB IO operations by auto-tuning then parameters of var

ying ranges

High-Dimensional Problem

« multi-task modeling

« dimensionality reduction through clustering



Introduction

Auto-tuning method 2 2%} 0| &

A high-dimensional optimization space is a common phenomenon in general-purpose systems as they

have many parameters and objectives



Introduction

Bayesian Optimization(BO)

« A sample efficent tuner, has received considerable attention in recent years due to its versatility

and efficiency

« The framework, first builds a system model and then uses the model to find an optimal config-

uraiton



Introduction

BO’s drawback is its inability to handle heigh-dimensional spaces

« Curse of dimensionality

« A computationally expensive operation in the surrogate model

Optimizing over multiple targets to increase learning mileage per training sample

Decomposes into a subset of system components that influence the primary target.



Background

« RocksDB is a key-value store based on LevelDB that provides efficient concurrent reads and writes
« RocksDB stores new data in a Log-Structured Merge-Tree(LSM-Tree) format in memory

« Once the memtable is full, RocksDB flushes it sequentially into a Sorted Sequenc
e Tree(SST) file on disk

« Rocks DB still processes concurrent writes during the flushing process

« SST organizes the data in levels starting from level-0 to level-n

« When a level is full, it performs a housekeeping operaion(compaction) that merges and re

moves tombstones

« During compaction, RocksDB stalls new writes, leading to a reduced |10 throughput and inc

reased latency



Background

Bayesian Optimization

BO is a sample efficient optimization framework that solves the problem of block-box functio
n optimization

Surrogate Model argmax Acquisition
f function
« contains a belief of the system and « performs numerical optimization
updates at every now observation operations over the model to find

configurations to test next on the
objective function



Background
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Structured multi-task optimization

overveiw

« Used multi-task learning to capture the intersection between system components
« Learn more from every sample, reducing the observation needed for convergence

« Reduces the dimensions through a manual grouping of parameters to speed up the convergence



Problem space and assumptions

The fundamental assumption in using GP

« the function is differentiable at every point

- the modeling space is a multivariate Gaussian distribution

We performed 500 independent experime

nts where we randomly sampled the model
Ing space(then parameters)

Trace of 500 random configurations and the shape of IOPS
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Multi-task learning

Chose three additional objectives based on our understanding of Rocks DB architecture

- WriteAmplification : the ratio of bytes written to storage to the bytes written to the backend.
« ReadBlockGetP99 : The 99t percentile latency to read a block of data.

 LevelOTolevel1P99 : The 99t percentile time it takes to compact blocks stored in levelO to levell.
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Multi-task learning

A machine learning method based on shared representations, which uses task multit
asking for learning
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Multi-task learning

A machine learning method based on shared representations, which uses task multit
asking for learning
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Multi-Task learning in GP

Intrinsic Coregionalization Model (ICM kernel)

k((x,m),(x',m")) = k,(x,x")ks(m,m")

k,.(x, x") The parameter covariance kernel

kT (m, m’) The task similarity kernel



|ICM challenges

« ICM method provides a neat trick to get more mileage out of the few sample

A standard GP inference is 0(Tn?), duplicating the data to the number of tasks scales this to



Decomposability through clustering

The decomposability refers to the smallest unit of obseravable RocksDB's performace metric and a corre
sponding set of parameters in this context

Using the 500 random configurations thrace, we calculated the correlations betw
een IOPS and the 517 observable metric from RocksDB and the correlations be
tween them to the parameters



Decomposability through clustering
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Decomposability through clustering

Table 1. RocksDB parameters and their impact. All reported
parameters are discrete ordinal variables.

Parameter Range Default
max_background_compactions [1, 28]
max_background_flushes [110]
write_buffer_size [1,15 % 107] | 226
max_write_buffer number [1,27] 2
min_write_buffer_number to_merge | [1,2°] 1
max_bytes_for_level multiplier [5, 15] 10
block_size [1,5%10°] | 2!2
level0_file_num_compaction_trigger | [1, 28] P
level0_slowdown_writes_trigger [1,210] 0
levelO_stop_writes_trigger [1,210] 36




Evaluation

* used RocksDB’'s benchmark tool db_bench
« Set a budget of 100 optimization steps

Table 2. Alternative surrogate models as baselines. The
background has a short introduction to these methods 2.3.

Method Use case

TPE [4] Handles discrete parameters.

GP (NNI) [29] Standard O(n”) implementation.
Random [5] Low effective search dimensions.
Additive kernel [15] | Low-dimensions decomposability.
Default RocksDB v6.17 default settings.
BoTorch [3] Efficient GPyTorch O(n?) GP.




Model

Evaluation
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Conclusion

« The tuner exploits alternative observable metrics and structural decomposability to converge f
aster and reduce the dimensional space

« Utilize multi-task learning to provide an accessible mechanism for expressing structure in the
model

« Tuner outperformed the default configuration by x1.35 in 10 iterations, compared to the other

state-of-the-art methods requiring 60 iterations
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